

PingER End to End Internet measurements: what we learn

Les Cottrell^{SLAC},

Presented at the OARC/TechDay for the ICANN San Francisco March 7th, 2011

- How do we measure?
- Coverage
- What do we find?
 - Measure: Losses, RTT, Jitter, Unreachability
 - Derivations: Throughput, MOS, Directness of connections
- Relations to Human Development Indices
- Case Studies:
 - Africa and new undersea fibres
 - Fibre cut impacts
 - Egypt, Libya, Japan

Monitors~70 in 23 countries – 4 in Africa

Beacons ~ 90

Remote sites (~740) – 50 African Countries

 $- \sim 99\%$ of world's population in monitored countries

Measure: RTT, jitter, loss, unreachability Derive: throughput, MOS, Directness of links

Variation in RTT & Congestion

- Can use difference in min_RTT and Avg_RTT
- Or measure Inter packet variation to get jitter

Losses

- Low losses are good.
- Losses are mainly at the edge, so distance independent
- Losses are improving exponentially, ~factor 100 in 12 years

- Best <0.1%: N. America, E. Asia, Europe, Australasia
- Worst> 1%:
- Africa & C. Asia

Unreachability Example Pakistan

- An unreachable host doesn't reply to any pings.
- We chose a reliable host at SLAC (pinger.slac.stanford.ed u) and analyzed the unreachability of Pakistani hosts.

Unreachability from SLAC to Pakistani monitoring

Big problems with power, lack of oil, budgets etc.

an-00

an-01

lan-98

an-99

Jan-02

lan-03 lan-04

Africa in danger of falling even further behind. In 10 years at current rate Africa will be 150 times worse than Europe

Jan-06

Jan-07 Jan-08 Jan-10

Jan-09

an-05

Mean Opinion Score

- Used in phone industry to decide quality of call
- *MOS* = *function(loss, RTT, jitter)*
- 5=perfect, 1= lowest perceived audible quaity

Correlation with Social Activity

 Between SLAC and Taxila U in Pakistan. Can correlate performance with activities

10

Directness of Connection

- The speed of light in fibre is roughly 0.66*c
 - 'c' = speed of light in vacuum i.e. 299,792,458 m/s
- Using 300,000 km/s as 'c' this yields:
 - RTD[km]=Alpha*min_RTT[ms]*100[km/ms]
- Alpha is a way to derive Round Trip Distance (RTD) between two hosts (using minimum RTT).
- Or if we know the RTD
 - Large values of *Alpha* close to one indicate a direct path.
 Small values usually indicate a very indirectly routed path.
- This assumes no queuing and minimal network device delays.

Normalized TCP Throughput in 2010 vs. UN Human Development Index (HDI)

UNDP HDI:

- A long and healthy life, as measured by life expectancy at birth
- Knowledge as measured by the adult literacy rate (with 2/3 weight) and the combined primary, secondary and tertiary growth enrollment ratio (with 1/3 weight)
- A decent standard of living, as measured by GDP per capita

A Clear Correlation Between the UNDP HDI and the Throughput

Why does Fibre matter: Satellite & Min-RTT for Africa GEOS (Geostationary Earth Orbit Satellite)

- - good coverage, but expensive in \$/Mbps
 - broadband costs 50 times that in US, >800% of monthly salary c.f. 20% in US
 - AND long delays min RTT > 450ms which are easy to spot
 - N.b. RTTs > 250ms v. bad for VoIP

What is happening 2008 Up until July 2009 only one submarine fibre optic cable to sub-Saharan Africa (SAT3) costly (no competition) & only W. Coast 2010 Football World Cup => scramble to provide fibre optic connections to S. Africa, both E

2012

African Undersea Cables (2012)

• Multiple providers = competition

& W Coast

 New Cables: Seacom, TEAMs, Main one, EASSy, already in production
 manypossibilities.net/african-undersea-cables

Impact: RTT etc.

- As sites move their routing from GEOS to terrestrial connections, we can expect:
 - Dramatically reduced Round Trip Time (RTT), e.g. from 700ms to 350ms – seen immediately
 - Reduced losses and jitter due to higher bandwidth capacity and reduced contention – when routes etc. stabilized
- Dramatic effects seen in leading Kenyan & Ugandan hosts
- RTT improves by factor 2.2
- Losses reduced
- Thruput ~1/(RTT*sqrt(loss)) up factor 3

- Angola step mid-May, more stable
- Zambia one direction reduce 720>550ms
 - Unstable, still trying?
- Tanzania, also dramatic reduction in losses
- Uganda inland via Kenya, 2 step process
- Many sites still to connect

600 n

Impact of Fibre cuts Dec 2008

- Not only for competition
- Need redundancy
- Mediterranean Fibre cuts
 - Jan 2008 and Dec 2008
 - Reduced bandwidth by over 50% to over 20 countries
- New cable France-Egypt Sep 1 '10

10000mmsthe last 10 Days Source "pinger.slac.stanford.edu" To Desti@St COMMEGTION 200=>400msms

Derived TCP Throughput in kbits/sec from SLAC to Hosts in Countries Affected by the Mediterranean Fibre Cable Cuts December 2008

SLACE NATIONAL ACCELERATOR LABORATORY

Recent Internet shutdowns

 SLAC lost connectivity to the National Authority for Remote Sensing and Space Science (NARSS) in Cairo between 11:30 pm Jan 27, and midnight 30 minutes later

 NAARS could be seen again from SLAC between midnight and 1:00am February 7th, 2011

Japanese Earthquake

- SLAC monitors 6 Japan hosts
 - None went down
 - 3 RTTs had big RTT increase

- Monitoring from host at RIKEN
 - All Japanese hosts have constant RTT
- Monitoring sites around world looking at RIKEN:
 - No effect: from Africa, E. Asia, Europe, L. America, M. East
 - Big effect from N. America to RIKEN
 - Canada 163ms=>264ms, US 120ms=>280ms
 - India CDAC Mumbia no effect, Pune 380ms=> 460ms, VSNL Mumbia 360ms=>400ms
 - Sri Lanka no effect
 - Pakistan depends on ISP
- It depends on the route, westbound from US OK, Eastbound big increases

More Information

- By the way; the PingER measurement engine was IPv6 compliant back in 2003
- We are working on the analysis, presentation etc.
- PingER Home site
 - http://www-iepm.slac.stanford.edu/pinger/site.html
- Annual report:
 - <u>http://www.slac.stanford.edu/xorg/icfa/icfa-net-paper-jan11/report-jan11.doc</u>
- Case Studies:
 - <u>https://confluence.slac.stanford.edu/display/IEPM/PingER</u>

Compare PingER with ICT Development Index (IDI) from ITU

- IDI = ICT readiness + usage + skills
- Readiness (infrastructure access)
 - phone (cell & fixed) subscriptions, international BW,
 %households with computers, and % households with
 Internet access
- Usage (intensity of current usage)
 - % population are Internet users, %mobile, and fixed broadband users
- Skills (capability)
 - Literacy, secondary & tertiary education

www.itu.int/ITU-D/ict/publications/idi/2009/material/IDI2009_w5.pdf

PingER throughput & IDI

- Positive correlation between PingER throughput & IDI, especially for populous countries
- PingER
 measurements
 automatic
- No army of data gatherers & statisticians
- More up to date
 - IDI 2009 index of for 2007 data
- Good validation
- Anomalies interesting

